GENERAL DESCRIPTION

ITF TECHNOLOGY

The L0402 LGA Inductor is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

APPLICATIONS

- Mobile Communications
- Satellite TV Receivers
- GPS
- Vehicle Location Systems
- Wireless LAN's
- Filters
- Matching Networks

LAND GRID ARRAY

ADVANTAGES

- Inherent Low Profile
- Self Alignment during Reflow
- Excellent Solderability
- Low Parasitics
- Better Heat Dissipation

HOW TO ORDER

P/N Example: L04023R3BHNTR

QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

TERMINATION

Nickel/Lead Free solder coating compatible with automatic soldering

DIMENSIONS: millimeters (inches)

BOTTOM VIEW

- L: 1.00±0.10 (0.039±0.004)
- W: 0.58±0.07 (0.023±0.003)
- T: 0.35±0.10 (0.014±0.004)
- A: 0.48±0.05 (0.019±0.002)
- B: 0.17±0.05 (0.007±0.002)
- S, H: 0.064±0.05 (0.003±0.002)

MAKING AND ORIENTATION IN TAPE

Recommended Pad Layout Dimensions mm (inches)

- Top View:
 - 0.7 (0.028)
 - 1.6 (0.063)

- Bottom View:
 - 0.6 (0.024)

Technologies: reflow, wave soldering, vapor phase and manual.
ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>L(nH)</th>
<th>Tolerance A=±0.05nH, B=±0.1nH, C=±0.2nH, D=±0.5nH</th>
<th>Q (min)</th>
<th>Q (Typ)</th>
<th>Q (Typ)</th>
<th>Q (Typ)</th>
<th>SRF min. (GHz)</th>
<th>R_{dc} max. (Ω)</th>
<th>I_{dc} max. (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.56</td>
<td>± 0.05nH, ± 0.1nH</td>
<td>35</td>
<td>45</td>
<td>55</td>
<td>65</td>
<td>75</td>
<td>20000</td>
<td>0.02</td>
</tr>
<tr>
<td>0.68</td>
<td>± 0.05nH, ± 0.1nH</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>20000</td>
<td>0.04</td>
</tr>
<tr>
<td>0.82</td>
<td>± 0.05nH, ± 0.1nH</td>
<td>25</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>20000</td>
<td>0.06</td>
</tr>
<tr>
<td>1.0</td>
<td>± 0.05nH, ± 0.1nH</td>
<td>20</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>20000</td>
<td>0.15</td>
</tr>
<tr>
<td>1.2</td>
<td>± 0.05nH, ± 0.1nH</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>45</td>
<td>20000</td>
<td>0.20</td>
</tr>
<tr>
<td>1.5</td>
<td>± 0.05nH, ± 0.1nH</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>18000</td>
<td>0.20</td>
</tr>
<tr>
<td>1.8</td>
<td>± 0.05nH, ± 0.1nH</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>40</td>
<td>16000</td>
<td>0.20</td>
</tr>
<tr>
<td>2.2</td>
<td>± 0.05nH, ± 0.1nH</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>40</td>
<td>15000</td>
<td>0.20</td>
</tr>
<tr>
<td>2.7</td>
<td>± 0.05nH, ± 0.1nH</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>40</td>
<td>9500</td>
<td>0.25</td>
</tr>
<tr>
<td>3.3</td>
<td>± 0.1nH, ± 0.2nH</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>40</td>
<td>8500</td>
<td>0.40</td>
</tr>
<tr>
<td>3.9</td>
<td>± 0.1nH, ± 0.2nH</td>
<td>13</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>8000</td>
<td>0.45</td>
</tr>
<tr>
<td>4.7</td>
<td>± 0.1nH, ± 0.2nH</td>
<td>13</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>7500</td>
<td>0.45</td>
</tr>
<tr>
<td>5.6</td>
<td>± 0.1nH, ± 0.2nH</td>
<td>13</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>7000</td>
<td>0.65</td>
</tr>
<tr>
<td>6.8</td>
<td>± 0.1nH, ± 0.2nH</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>6500</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Please contact factory for intermediate inductance values within the indicated range.