GENERAL DESCRIPTION

AVX has combined the best electrical characteristics of its TransGuard® Transient Voltage Suppressors (TVS) and its Feedthru Capacitors into a single chip for state-of-the-art overvoltage circuit protection and EMI reduction over a broad range of frequencies. This unique combination of multilayer ceramic construction in a feedthru configuration gives the circuit design a single 0805 chip that responds to transient events faster than any TVS device on the market today, and provides significant EMI attenuation when in the off-state.

Automotive TransFeeds are designed for automotive applications and are AEC-Q 200 qualified.

The reduction in parallel inductance, typical of the feedthru chip construction when compared to the construction of standard TVS or ceramic capacitor chips, gives the TransFeed product two very important electrical advantages: (1) faster “turn-on” time. Calculated response times of <200 pSec are not unusual with this device, and measured response times range from 200 – 250 pSec. The TransFeed “turn-on” characteristic is less than half that of an equivalent TransGuard® part — and TransGuards® clamp transient voltages faster than any other bipolar TVS solution such as diodes; (2) the second electrical advantage of lower parallel inductance, coupled with optimal series inductance, is the enhanced attenuation characteristics of the TransFeed product. Not only is there significantly greater attenuation at a higher self-resonance frequency, but the roll-off characteristic becomes much flatter, resulting in EMI filtering over a much broader frequency spectrum. Typical applications include filtering/protection on Microcontroller I/O Lines, Interface I/O Lines, Power Line Conditioning and Power Regulation.

TYPICAL APPLICATIONS

• Drive by Wire
• Dimming Mirror Circuit
• Filtering/protection on Microcontroller I/O lines
• Filtering/protection on Interface I/O lines
• Power Line Conditioning
• Power Regulation
• LCD Dashboard driver

Where designers are concerned with both transient voltage protection and EMI attenuation, either due to the electrical performance of their circuits or due to required compliance to specific EMC regulations, the TransFeed product is an ideal choice.

GENERAL CHARACTERISTICS

- Operating Temperature: -55°C to +125°C
- Working Voltage: 5.6Vdc - 26Vdc
- Case Size: 0805
- Energy Rating: 0.05 - 0.3J
- Current: 20 - 120A
- Max Feedthru Current: 0.5 - 1A

FEATURES

- Bi-directional TVS
- Narrow band, high attenuation filter
- EMI Filtering over broader frequency range
- Fastest Response Time to ESD Strikes
- AEC-Q 200 Qualified
HOW TO ORDER

<table>
<thead>
<tr>
<th>Chip Size</th>
<th>No. of Elements</th>
<th>Voltage</th>
<th>DC Clamping Voltage</th>
<th>Energy Rating</th>
<th>Capacitance Tolerance</th>
<th>Termination Finish</th>
<th>Packaging Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 = 0805</td>
<td></td>
<td>05: 5.6 VDC</td>
<td>150 = 18V</td>
<td>0.05J X</td>
<td>+100/-50%</td>
<td>P = Ni/Sn (Plated)</td>
<td>D = 1,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09: 9.0 VDC</td>
<td>200 = 22V</td>
<td>0.1J A</td>
<td></td>
<td></td>
<td>R = 4,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14: 14.0 VDC</td>
<td>300 = 32V</td>
<td>0.3J C</td>
<td></td>
<td></td>
<td>T = 10,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18: 18.0 VDC</td>
<td>400 = 42V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>26: 26.0 VDC</td>
<td>500 = 50V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 = 60V</td>
<td>600 = 60V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSFEED ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V2AF105A150Y2E_ _</td>
<td>5.6</td>
<td>4.0</td>
<td>8.5±20%</td>
<td>18</td>
<td>35</td>
<td>0.10</td>
<td>30</td>
<td>300</td>
<td>0.200</td>
<td>0.75</td>
<td>–</td>
</tr>
<tr>
<td>V2AF105C150Y1F_ _</td>
<td>5.6</td>
<td>4.0</td>
<td>8.5±20%</td>
<td>18</td>
<td>35</td>
<td>0.30</td>
<td>120</td>
<td>2500</td>
<td>0.150</td>
<td>1.00</td>
<td>–</td>
</tr>
<tr>
<td>V2AF109A200Y2E_ _</td>
<td>9.0</td>
<td>6.4</td>
<td>12.7±15%</td>
<td>22</td>
<td>25</td>
<td>0.10</td>
<td>30</td>
<td>575</td>
<td>0.200</td>
<td>0.75</td>
<td>–</td>
</tr>
<tr>
<td>V2AF109C200Y1F_ _</td>
<td>9.0</td>
<td>6.4</td>
<td>12.7±15%</td>
<td>22</td>
<td>25</td>
<td>0.30</td>
<td>120</td>
<td>1800</td>
<td>0.150</td>
<td>1.00</td>
<td>–</td>
</tr>
<tr>
<td>V2AF114A300Y2E_ _</td>
<td>14.0</td>
<td>10.0</td>
<td>18.5±12%</td>
<td>32</td>
<td>15</td>
<td>0.10</td>
<td>30</td>
<td>300</td>
<td>0.200</td>
<td>0.75</td>
<td>27.5</td>
</tr>
<tr>
<td>V2AF114C300Y1F_ _</td>
<td>14.0</td>
<td>10.0</td>
<td>18.5±12%</td>
<td>32</td>
<td>15</td>
<td>0.30</td>
<td>120</td>
<td>900</td>
<td>0.150</td>
<td>1.00</td>
<td>27.5</td>
</tr>
<tr>
<td>V2AF118A400Y2E_ _</td>
<td>18.0</td>
<td>13.0</td>
<td>25.5±10%</td>
<td>42</td>
<td>10</td>
<td>0.10</td>
<td>30</td>
<td>200</td>
<td>0.200</td>
<td>0.75</td>
<td>27.5</td>
</tr>
<tr>
<td>V2AF118C400Y1F_ _</td>
<td>18.0</td>
<td>13.0</td>
<td>25.5±10%</td>
<td>42</td>
<td>10</td>
<td>0.30</td>
<td>120</td>
<td>500</td>
<td>0.150</td>
<td>1.00</td>
<td>27.5</td>
</tr>
<tr>
<td>V2AF118X500Y3D_ _</td>
<td>18.0</td>
<td>13.0</td>
<td>25.5±10%</td>
<td>50</td>
<td>10</td>
<td>0.05</td>
<td>20</td>
<td>75</td>
<td>0.250</td>
<td>0.50</td>
<td>27.5</td>
</tr>
<tr>
<td>V2AF126C600Y2E_ _</td>
<td>26.0</td>
<td>18.0</td>
<td>34.5±10%</td>
<td>60</td>
<td>10</td>
<td>0.3</td>
<td>80</td>
<td>250</td>
<td>0.2</td>
<td>0.75</td>
<td>27.5</td>
</tr>
</tbody>
</table>

- **AVX** - Automotive Feedthru Capacitor
- **Energy Rating**: X = 0.05J, A = 0.1J, C = 0.3J
- **Capacitance Tolerance**: Y = +100/-50%
- **DC Resistance**: 1 = 0.150 Ohms, 2 = 0.200 Ohms, 3 = 0.250 Ohms
- **Peak Current Rating**: 1 = 500 mA, 2 = 750 mA, 3 = 1.0 Amp
- **Maximum Feedthru Current**: D = 500 mA, E = 750 mA, F = 1.0 Amp

HOW TO ORDER

- **AVX Part Number**: V2AF105A150Y2E
- **Working Voltage (DC)**: 5.6 VDC
- **Working Voltage (AC)**: 4.0 VDC
- **Breakdown Voltage**: 8.5 ± 20%
- **Clamping Voltage**: 18 V
- **Maximum Leakage Current**: 35 μA
- **Transient Energy Rating**: 0.10 J
- **Peak Current Rating**: 30 A
- **Typical Cap**: 300 μF
- **DC Resistance**: 0.200 Ohms
- **Maximum Feedthru Current**: 0.75 A
- **Jump Start Voltage**: –
TransFeed Automotive Series
AVX Multilayer Ceramic Transient Voltage Suppressors
TVS Protection and EMI Attenuation in a Single Chip

DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>W</th>
<th>T</th>
<th>BW</th>
<th>BL</th>
<th>EW</th>
<th>X</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0805</td>
<td>2.01 ± 0.20 (0.079 ± 0.008)</td>
<td>1.25 ± 0.20 (0.049 ± 0.008)</td>
<td>1.143 Max. (0.045 Max.)</td>
<td>0.46 ± 0.10 (0.018 ± 0.004)</td>
<td>0.18 ± 0.25 -0.08 (0.007 ± 0.010 -0.003)</td>
<td>0.25 ± 0.13 (0.010 ± 0.005)</td>
<td>1.02 ± 0.10 (0.040 ± 0.004)</td>
<td>0.23 ± 0.05 (0.009 ± 0.002)</td>
</tr>
</tbody>
</table>

RECOMMENDED SOLDER PAD LAYOUT (Typical Dimensions)

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>P</th>
<th>S</th>
<th>W</th>
<th>L</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0805</td>
<td>3.45 (0.136)</td>
<td>0.51 (0.020)</td>
<td>0.76 (0.030)</td>
<td>1.27 (0.050)</td>
<td>1.02 (0.040)</td>
<td>0.46 (0.018)</td>
</tr>
</tbody>
</table>
PERFORMANCE CHARACTERISTICS

FEEDTHRU VARISTORS

AVX Multilayer Feedthru Varistors (MLVF) are an ideal choice for system designers with transient strike and broadband EMI/RFI concerns.

Feedthru Varistors utilize a ZnO varistor material and the electrode pattern of a feedthru capacitor. This combination allows the package advantage of the feedthru and material advantages of the ZnO dielectric to be optimized.

ZnO MLV Feedthrus exhibit electrical and physical advantages over standard ZnO MLVs. Among them are:

1. Faster Turn on Time
2. Broadband EMI attenuation
3. Small size (relative to discrete MLV and EMI filter schemes)

The electrical model for a ZnO MLV and a ZnO Feedthru MLV are shown below. The key difference in the model for the Feedthru is a transformation in parallel to series inductance. The added series inductance helps lower the injected transient peak current (by 2πfL) resulting in an additional benefit of a lower clamping voltage. The lowered parallel inductance decreases the turn on time for the varistor to <250ps.

Where: $R_V =$ Voltage Variable resistance (per VI curve)

R_p \geq 10^{12} Ω

$C =$ defined by voltage rating and energy level

$R_{on} =$ turn on resistance

$L_p =$ parallel body inductance

Where: $R_V =$ Voltage Variable resistance (per VI curve)

$R_p =$ Body IR

$C =$ defined by voltage rating and energy level

$R_{on} =$ turn on resistance

$L_p =$ minimized parallel body inductance

$L_s =$ series body inductance
PERFORMANCE CHARACTERISTICS

APPLICATIONS
- EMI Suppression
- Broadband I/O Filtering
- VCC Line Conditioning

FEATURES
- Small Size
- Low ESR
- Ultra-fast Response Time
- Broad S21 Characteristics

MARKET SEGMENTS
- Computers
- Automotive
- Power Supplies
- Multimedia Add-On Cards
- Bar Code Scanners
- Remote Terminals
- Medical Instrumentation
- Test Equipment
- Transceivers
- Cellular Phones / Pagers

The following applications and schematic diagrams show where TransFeed TVS/EMI filtering devices might be used:
- System Board Level Interfaces: (Fig. 1)
 - Digital to RF
 - Analog to Digital
 - Digital to Analog
- Voltage Regulation (Fig. 2)
- Power Conversion Circuits (Fig. 3)
- GaAs FET Protection (Fig. 4)

SPECIFICATION COMPARISON

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MLV 0805</th>
<th>MLVF 0805</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ls typical</td>
<td>N/A</td>
<td>5ph</td>
</tr>
<tr>
<td>Lp typical</td>
<td><1.5nh</td>
<td><600nh</td>
</tr>
<tr>
<td>R_on typical</td>
<td><0.1Ω</td>
<td><0.25Ω</td>
</tr>
<tr>
<td>C typical</td>
<td>100pf to 5.5nf</td>
<td>100pf to 2.5nf</td>
</tr>
<tr>
<td>R_v typical</td>
<td>see VI curves</td>
<td>see VI curves</td>
</tr>
<tr>
<td>R_d typical</td>
<td>>1 x 10^{12}Ω</td>
<td>>0.25 x 10^{12}Ω</td>
</tr>
<tr>
<td>Typical turn on time</td>
<td><500ps</td>
<td><250ps</td>
</tr>
<tr>
<td>Typical frequency response</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A comparison table showing typical element parameters and resulting performance features for MLV and MLVF is shown above.