Transmission Line MIM Capacitor
(Metal-Insulator-Metal)

BENEFITS
• HFSS Design Unique for every device
• Gold Wirebondable
• Copper Conductor Design for improved Circuit Conductivity
• Designs Optimized for RF/Performance
• ROHS Compliant

DESCRIPTION
AVX Thin Film Technologies is pleased to introduce a novel MIM (Metal-Insulator-Metal) capacitor using a transmission line wire bond pad structure with backside ground.

The TL MIM can be supplied on quartz, alumina, glass and other substrates to minimize losses. Copper traces are used for optimal conductivity. Front and backside gold metalization make this device suitable epoxy, gold wire bond/ribbon bond attachments.

APPLICATIONS
• DC Blocking at UHF
• High Frequency Link
• RF Microwave applications

SUBSTRATE MATERIALS
- Alumina (Al₂O₃)
- Quartz

MECHANICAL DIMENSIONS
Based on Transmission Line Design Request

CAPACITOR MATERIALS

<table>
<thead>
<tr>
<th>Rated Voltage</th>
<th>Specific Capacitance</th>
<th>Dissipation Factor</th>
<th>TCC (ppm/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td><100</td>
<td>50 - 100 * pf/mm²</td>
<td><0.1%</td>
<td>±60</td>
</tr>
</tbody>
</table>

*Actual maximum capacitance values depend on transmission line dimensions

TEST METHODS

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-STD-883-2011.10</td>
<td>BOND STRENGTH > 3 gm min. w/0.001” Au Wire</td>
</tr>
<tr>
<td>MIL-STD-883-2019.10</td>
<td>SHEAR STRENGTH Size Dependent See Procedure</td>
</tr>
<tr>
<td>MIL-STD-202-108</td>
<td>LIFE 1000 hrs @ 125°C</td>
</tr>
</tbody>
</table>
Transmission Line MIM Capacitor
(Metal-Insulator-Metal)

GENERAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>DESIGN DEPENDENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitor Range</td>
<td>0.3 - 50 Pf</td>
</tr>
<tr>
<td>Tolerance</td>
<td>± 20%</td>
</tr>
<tr>
<td>Backing</td>
<td>Gold Metalization</td>
</tr>
<tr>
<td>Termination Type</td>
<td>Gold Wire Bond</td>
</tr>
</tbody>
</table>

AVAILABLE PART NUMBERS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Substrate</th>
<th>Length (mils)</th>
<th>Width (mils)</th>
<th>Thickness (mils)</th>
<th>Cap Value (pF)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV0304CA150MABW</td>
<td>Alumina</td>
<td>30</td>
<td>40</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>MV0402CA150MAAW</td>
<td>Alumina</td>
<td>40</td>
<td>20</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>MV0802CA150MAAW</td>
<td>Alumina</td>
<td>80</td>
<td>20</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>MV0804CA1R0MABW</td>
<td>Alumina</td>
<td>80</td>
<td>40</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>MV0804CA150MABW</td>
<td>Alumina</td>
<td>80</td>
<td>40</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>MV3204CA150MABW</td>
<td>Alumina</td>
<td>120</td>
<td>40</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>MV0404CA150MABW</td>
<td>Alumina</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>MV0505CA150MQAW</td>
<td>Quartz</td>
<td>50</td>
<td>50</td>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>

*Capable Capacitance Value Ranging From: 0.3-50 (pF)
Most Common Capacitance Values Requested are 1, 5, and 15 (pF)

HOW TO ORDER

MV

Series Code: MV = TL MIM

- **MV** Series Code
- **04** Substrate Length in tens of mils
- **02** Substrate Width in tens of mils
- **C** Working Voltage C = 100 WVDC
- **A** Standard Impedance A = 50Ω X = Other Contact Factory
- **150** Capacitance code in pF
- **M** Capacitance Tolerance M = ± 20%
- **A** Substrate A = Alumina Q = Quartz G = Glass X = Other
- **A** Substrate Thickness (mils) A = 5 mils B = 10 mils C = 15 mils
- **W** Packaging W = anti-static waffle pack T = tested, undiced D = Tested and diced on tape
Transmission Line MIM Capacitor
(Metal-Insulator-Metal)

Substrate: Al₂O₃
Size: 1mm x 0.5mm x 0.125mm
Capacitance: 8pF

Substrate: Al₂O₃
Size: 2mm x 0.5mm x 0.125mm
Capacitance: 15 pF
Transmission Line MIM Capacitor
(Metal-Insulator-Metal)

Equivalent Circuit

Substrate: Al₂O₃
Size: 8.12mm x 1mm x 0.25mm
Capacitance: 15 pF

Frequency (MHz)
s₂₁
s₁₁